Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Уравнения смешанного типа, разные вопросы об уравнениях
1.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 7x плюс 18 конец ар­гу­мен­та =x в квад­ра­те плюс 7x плюс 18.

2.  
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...

3.  
i

Ука­жи­те но­ме­ра функ­ций, для ко­то­рых зна­че­ние ар­гу­мен­та, рав­ное −6, яв­ля­ет­ся нулем функ­ции.

1) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка
2) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус 36
3) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус 7 x плюс 6
4) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x минус 6
5) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 6 конец ар­гу­мен­та
4.  
i

Зна­че­ние вы­ра­же­ние 6 минус 6 умно­жить на ло­га­рифм по ос­но­ва­нию 5 x_0, где x0  — ко­рень (наи­боль­ший ко­рень, если их не­сколь­ко) урав­не­ния

 дробь: чис­ли­тель: 3 плюс ло­га­рифм по ос­но­ва­нию 5 x, зна­ме­на­тель: 1 минус ло­га­рифм по ос­но­ва­нию 5 x конец дроби минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 1 минус ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те x конец дроби минус 2=0,

равно?

5.  
i

Ука­жи­те но­ме­ра урав­не­ний, ко­то­рые яв­ля­ют­ся рав­но­силь­ны­ми:

1.   левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка =0;

2.   ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 10 конец ар­гу­мен­та =2;

3.  x в квад­ра­те плюс 36=0;

4.   дробь: чис­ли­тель: x минус x в квад­ра­те минус 5, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: x в квад­ра­те минус x минус 3, зна­ме­на­тель: 3 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ;

5.  |x| минус 6=0.

1) 1, 2
2) 2, 4
3) 3, 4
4) 1, 5
5) 3, 5
6.  
i

Ука­жи­те но­ме­ра урав­не­ний, рав­но­силь­ных урав­не­нию  дробь: чис­ли­тель: 2,5, зна­ме­на­тель: x минус 7 конец дроби = дробь: чис­ли­тель: 4,1, зна­ме­на­тель: x плюс 9 конец дроби .

1)  ло­га­рифм по ос­но­ва­нию 2 x=5
2)  ло­га­рифм по ос­но­ва­нию 5 x=2
3)  ло­га­рифм по ос­но­ва­нию 4 x=32
4)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 32 пра­вая круг­лая скоб­ка x=0
5)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка x =1,25
7.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  ко­си­нус x=\left| дробь: чис­ли­тель: x, зна­ме­на­тель: 11 Пи конец дроби |.

8.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  синус x= дробь: чис­ли­тель: минус x, зна­ме­на­тель: 16 Пи конец дроби .

9.  
i

Най­ди­те уве­ли­чен­ную в 3 раза сумму квад­ра­тов кор­ней урав­не­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.

10.  
i

Най­ди­те уве­ли­чен­ную в 25 раз сумму квад­ра­тов кор­ней урав­не­ния

10 ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 14 плюс 5x минус x в квад­ра­те конец дроби конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 14 плюс 5x минус x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби конец ар­гу­мен­та =19.

11.  
i

Най­ди­те сумму квад­ра­тов кор­ней урав­не­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 6 конец ар­гу­мен­та левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка плюс 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 плюс 2x в квад­ра­те минус 24 конец дроби =0.

12.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .